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The axisymmetric withdrawal of fluid from a linearly stratified container is studied 
over the full parameter range. When only buoyancy and inertia are important the 
flow in the withdrawal layer is influenced by a virtual control point and is not 
analogous to that observed in the two-dimensional withdrawal problem. Two further 
flow regimes are shown to exist in which viscous forces are important : one in which 
convection of species is important, and a second in which diffusion of species is 
important. Theoretical arguments and laboratory experiments are used to show that 
S = ( Q 2 N / v 3 ) ~  is the appropriate flow parameter to differentiate between these 
possibilities. It is also argued that these results may be generalized to describe the 
features of several related flows : axisymmetric drawdown (or drawup) in withdrawal 
from a layered density structure, axisymmetric inflow into a linearly stratified envi- 
ronment and the axisymmetric spreading of density currents. 

1. Introduction 
The withdrawal of fluid from adensity-stratified container (i.e. selective withdrawal) 

has long been a subject of interest as a management technique for the control of water 
quality in water supply reservoirs. Selective withdrawal, however, has a much wider 
application. Pumped sampling systems are often used by marine biologists, for 
example, to determine phytoplankton concentrations in stratified oceans or lakes 
(Fasham 1978), and the vertical scale of the sampling is of fundamental interest. On 
a larger scale the production of mixed magmas from active volcanoes is also a problem 
in selective withdrawal from the stratified magma chamber (Blake & Ivey 1985). In 
addition to the diverse applications of selective withdrawal, there is also a close 
analogy between withdrawal and inflow into a stratified fluid. Thus an understanding 
of the withdrawal process sheds considerable light on a range of inflow problems. 

The majority of work to date has been in the study of two-dimensional selective 
withdrawal - the withdrawal of fluid from rectangular containers through a line sink. 
Imberger (1980) provides a comprehensive review of this work. He identifies three 
basic flow regimes, delineated by the transition parameter R = F,C$ where the 
Froude number F, = q / N L 2  and the Grashof number Gr = N2L4/v2. In this context, 
q is the discharge per unit width, N is the buoyancy frequency, v is the kinematic 
viscosity and L is the horizontal distance from the sink to the upstream boundary. 

The withdrawal layer may be assumed to be steady throughout the container when 
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it is steady at the upstream boundary (Imberger 1980), and at  steady state the 
withdrawal-layer thickness S is given by 

S - (vD): (gy = LGr-&c* (R c Sc-i), 

where the Schmidt number Sc = v / D  and D is the diffusivity of the stratifying species. 
In the present study S is taken as the withdrawal-layer half-thickness: the vertical 
distance from the horizontal centreline of the induced horizontal velocity profile to 
the first zero-crossing of that velocity profile (see figure 2 for a definition sketch). The 
evolution of the flow to steady state and the characteristics of these three regimes 
at  steady state are described in detail by Imberger, Thompson & Fandry (1976, 
hereinafter denoted by ITF) . 

In contrast, comparatively little work has been done on axisymmetric withdrawal. 
Both Lawrence (1980) and Spigel & Farrant (1984) have examined the withdrawal 
of fluid via a point sink from long rectangular containers in the regime where inertia 
and buoyancy forces are important. Their work is discussed in detail in $4 below. 
These authors point out that withdrawal structures in most water-supply reservoirs 
act as point sinks. The same is true of many other withdrawal configurations, such 
as the magma-chamber withdrawal problem. The axisymmetric withdrawal of fluid 
from a stratified container is thus of considerable practical interest. 

Our purpose in the present work is to examine the axisymmetric withdrawal from 
a stratified fluid in a bounded container over the entire parameter range. The fluid 
will be assumed continuously stratified and the transport coefficients v and D 
constant in value. The effect of variable viscosity is discussed in Blake & Ivey (1985). 
We also follow ITF by neglecting the effects of the sidewall boundary layers in order 
to focus on the dynamics of the withdrawal layer itself. The initial motion after 
commencing withdrawal is discussed in $2. The steady-state withdrawal layers, 
governed by either a balance between viscous and buoyancy forces OF a balance 
between inertia and buoyancy forces, are discussed in $3. Section 4 presents the 
results of the laboratory experiments covering both regimes. Section 5 addresses 
the problem of withdrawal from a discontinuously stratified fluid. Section 6 
discusses the analogy between these withdrawal configurations and the problem of 
axisymmetric inflow into stratified and homogeneous environments. Finally, $ 7 
presents the conclusions from this study. 

2. Initial motion 
In  studies of the withdrawal of fluid from stratified containers through a line sink, 

Pao & Kao (1974) and ITF have described the dynamics of the initial motion 
following the sudden initiation of withdrawal. Immediately after the sink is turned 
on, a nearly horizontal potential flow is created. This flow is then progressively 
modified by a discrete spectrum of planar shear waves that travel out from the sink 
against the induced uniform upstream velocity. As McEwan & Baines (1974) found, 
each shear wave front travels with a speed c, = N H / n x ,  where n is the modal number 
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and H the depth, and has a frontal width w, = H(NT)i /n ,  where T is the time. The 
modification of the potential flow by these shear waves dominates the initial 
dynamics of the flow. 

In the case of axisymmetric withdrawal through a point sink, a similar behaviour 
has been found. Following the sudden initiation of withdrawal through a point sink, 
Lawrence t Imberger (1979) and Lawrence (1980) demonstrated that a series of 
now cylindrical shear waves travel out from the sink. The induced velocity field in 
a semi-infinite domain is given by 

z+ I: " 3 2  - s i n r z )  
t %w, 2, t )  = - 

4,&H [ n-l nn H [(tN)2- (nnr/H)2]i 

where R is the Heaviside step function. 
We can generalize these results to the problem of axisymmetric withdrawal from 

the bounded container with the configuration shown in figure 1. Since the initial 
motion after turning on the sink is dominated by the presence of propagating shear 
waves, the correct non-dimensional variables to introduce are (see also ITF) 

r' = rH-l, z' = zH-l,  t' = T N ,  u' = uQ-'P, w' = wQ- lP ,  

P' = P ( P ~  QN)-'gP, P' = P ( P ~  &N)-'H, 

where the total density is decomposed as pt = po+pe(z) +p(r ,  z, t )  and the buoyancy 
frequency N2 = - (g/po) dp,/dz is a constant. In terms of these variables, the 
Boussinesq approximations to the equations of motion are (dropping the primes) 

where the aspect ratio A = H / L  and the Rayleigh number Ra = P L 4 / v D .  
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Introducing the axisymmetric stream function, and taking the limit when the 
Froude number F =  &/NL3+0 and the Rayleigh number Ra+co, these 
equations can be reduced to the linear inviscid non-diffusive equation for the 
axisymmetric stream function given by 

This equation is to be solved subject to  the boundary conditions for t 2 0 :  (i) 
9 = (Ar)2 -!j on z = 1 ; (ii) $ = !j on z = - 1 ; (iii) y? = -!j sgn z on r = 0;  (iv) y? = + 
on Ar = 1 ; and the initial conditions are (v) V2$ = V2$., = 0.  In  writing condition 
(i) we have assumed that the baroclinic and barotropic motions are separable. 

Taking the Laplace transform of (4) yields the solution 

where 

Inverting for small time yields 

Comparing the first two terms in (5) (the axisymmetric potential-flow solution) 
with the corresponding term in (2), it is clear that  the effect of the endwall is to induce 
a more-rapid decrease of horizontal velocity with distance from the sink than the 
linear decay observed in the unbounded domain. I n  both cases, however, the solution 
consists of an initial potential flow, subsequently modified by a discrete spectrum of 
propagating shear waves, as in the two-dimensional problem. 

In their detailed study of this problem ITF demonstrated that the shear waves 
were continually attenuated by diffusion of vorticity and mass and modified by con- 
vection induced by the previous waves. If the regime parameter R (see ( 1 ) )  is greater 
than one, then convection dominates and waves will propagate out until the induced 
flow just balances theirphasevelocity. A balance betweeninertia and buoyancy prevails 
at steady state. Conversely, if R is less than one the authors demonstrated waves will 
propagate until they have decayed by viscous action. A balance between viscosity 
and buoyancy prevails at steady state. 

Since the form of the initial behaviour is the same in both the line sink and 
axisymmetric withdrawal configurations, it is reasonable to anticipate that there 
should be a similarity in the long-time behaviour of the flows in the two configurations 
(this is confirmed by the experiments discussed in 54) - a similarity in that two basic 
steady-state axisymmetric withdrawal-layer configurations can develop : in the first 
a regime with a balance between buoyancy and viscous forces, and in the second a 
regime with a balance between buoyancy and inertial forces. 

3. Axisymmetric withdrawal-layer structure 
3.1.  The viscous-buoyancy withdrawal layer 

Let us consider the development of the flow beyond the initial motion in the case 
where we expect buoyancy and viscous forces to  be important. Further, let us consider 
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only fluids with Sc = u/D = 0(1) for the moment. As Imberger (1980) notes, the 
evolution to steady state is achieved by the viscous dissipation of the shear waves, 
and the nth wave will have dissipated in time T-A2 , / v ,  where the vertical 
wavelength An - H/n and the wave speed c,  N NA,. Whether the shear fronts are 
planar or cylindrical in form will make no difference to this estimated timescale. A 
withdrawal-layer structure will have formed when a wave is first dissipated a t  the 
upstream boundary of the tank, and the non-dimensionalized layer thickness S for 
this lengthscale L is 

- hr h, - G r 3  in time T N N - l G f .  
L L  

The correct non-dimensional variables for times of this magnitude are then 

r' = rL-1, z' = &-la, t' = T N G r t ,  u' = uQ-'LZ&-f, w' = WQ-lLZ, 

p' = p(po v&)-'gL4Gr-f, p' = p'(po vQ)-'L3Gr-i. 

In  terms of these new variables, the equations of motion may now be written 
(dropping the primes) 

Introducing the axisymmetric stream function, considering the case where 
R = FGd Q 1, and retaining terms correct to O(Gr-;), these equations may be reduced 
to the single equation 

Equation (7) is directly analogous to (15) in ITF. As in the two-dimensional case, 
the flow ultimately reaches a steady state in which both viscosity and the diffusivity 
of the stratifying species are important. That is, in the limit of large Gr, (6) reduces 
to 

In  dimensional form this balance yields a steady-state withdrawal-layer scale 
S - LCr-tSct - found by Koh (1966). The time for this ha1  steady state to appear 
is T - N-lGdh'c! (see below). 

While this is the behaviour for fluids with Sc (or Pr) = O ( l ) ,  our interest here is 
for fluids with Sc % 1 - t u  found in the laboratory, with salt stratification, for 
example, and in the magma-chamber withdrawal problem (Blake & Ivey 1985) which 
originally motivated this study. In the limit of large Sc and ch, (7) simplifies to 
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As ITF point out, the first term is only important for t = O(1). For t > 1 the 
remaining terms admit a similarity solution of the form 

where 9 = z t k l  $ = $(TJ), 

Substituting this similarity form back into (6), then in the limit of large Grashof 
number we obtain a pair of equations for momentum and species conservation 
respectively of the form 

2Rtft 1 tt ,, 
P + b P I  +$$‘-7 P$’ = - - P Sc r 

(where primes refer to  differentiation with respect to  7). 
These equations describe the evolution of the withdrawal layer in a bounded 

container (with r = O(1)) where R = FG$ < 1,  when Sc is large and when t > 1. It 
is evident from the species equation (8b)  that  the similarity form above will break 
down when either the species-convection or diffusion terms grow to the same order 
of magnitude as the convection of the background gradient. 

From (8b) it is clear, first, that  species convection will become important in time 
t - R-6 or, dimensionally, in time T - N-lGdR-6. This timescale for self-induced 
convection to  become important corresponds to the time it takes to fall one 
withdrawal-layer thickness (i.e. T - L2S/&), which yields the withdrawal-layer scale 

Unlike its two-dimensional counterpart (1 b) ,  the withdrawal-layer thickness is now 
independent of distance from the sink. 

Secondly, i t  is evident from ( 8 b )  that  diffusion of species will become important 
in time t - Scg or, dimensionally, in time T N N-lGdSc!. This timescale represents 
the time it  takes for diffusion to act over one withdrawal-layer scale (i.e. T - S2/D),  
which yields the withdrawal-layer scale 

i.e. the same structure as the final steady state for fluids with Sc N 1. 
Finally, we note that species convection will become important before species 

diffusion if R-6 < Sc! or R > S C ~ .  I n  summary, for the case R = FGd < (i.e. 
L > @iV-b-f) the initial viscous-buoyancy layer of thickness S - LGr-f will undergo 
secondary collapse for time T > N-lGrt. If Sc-9 < R < 1 a viscous-convective 
withdrawal layer of thickness S - (uQ/N2)t forms. Conversely, if R < Sc-9 a 
viscous-diffusive withdrawal layer forms of thickness S N ( v D ) ~ L ~ N - ~ .  I n  the viscous 
regime the axisymmetric withdrawal layer thus behaves much like its two-dimensional 
counterpart. The major difference is in the viscous-convective regime, where in the 
two-dimensional case the withdrawal layer has a thickness that increases with distance 
upstream from the sink (equation (lb)), while in the axisymmetric case the withdrawal- 
layer thickness is constant (equation (9a) ) .  
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3.2.  The inertial-buoyancy withdrawal layer 
In this regime the temptation is to argue once again by analogy with the two- 
dimensional results. It is instructive to do this, but, as will become evident, the 
analogy between two- and three-dimensional flows now breaks down. 

If viscosity is unimportant then in the two-dimensional case planar shear waves 
continue to propagate out from the sink until the flow velocity - induced by the 
previous waves - just balances their phase velocity. Smaller waves are swept out of 
the sink, and the local thickness of the withdrawal layer is exactly equal to the vertical 
wavelength of the highest-mode-number wave able to propagate upstream (ITF). 
While the propagating shear waves are cylindrical in the axisymmetric case, the same 
balance should prevail at  steady state. A steady-state balance involving only inertia 
and buoyancy forces would then take the form 

a 9 aP - (U*VU) = --- 
az Po a?-’ 

dP u-vp = -w A. 
dz 

Such a balance yields a withdrawal-layer scale of 

Equation (1Oc)  is analogous to (1 a ) .  Now, however, the balance in the axisymmetric 
case suggests an inertia-buoyancy layer which decreases in thickness with increasing 
distance from the sink. It is evident from (5 )  that the vertical wavenumber of the 
shear waves is independent of distance from the sink. Clearly then, a steady-state 
balance between the upstream propagation of shear waves and an induced downstream 
flow cannot possibly yield a withdrawal layer whose thickness decreases with 
increasing distance upstream, as suggested by (10). Indeed, an initial experiment by 
Lawrence & Imberger (1979) (see also Lawrence 1980), a more extensive set of 
experiments by Spigel & Farrant (1984) and our own laboratory experiments ($4) 
all indicate the withdrawal layer has a constant thickness of 6 - (&/N)k  This 
inconsistency may be resolved by considering the approach to steady state. Since the 
local thickness of the withdrawal layer is exactly equal to the wavelength of the 
highest-mode wave able to propagate to that station (ITF), then any factor that 
controls the upstream propagation of these waves will influence, in turn, the final 
steady-state structure. 

Bryant & Wood (1976) pointed out that a point of virtual control exists in the flow 
field if the local value of the internal Froude number is unity. In the present context, 
since the phase speed of the shear waves c ,  - NH/n  - NA,, where A ,  is the vertical 
wavelength and equal to the withdrawal-layer thickness 6, the internal Froude 
number Fi - (&/Sr)/NS. It is experimentally observed (see $4) that the steady-state 
withdrawal-layer thickness 6 N (&/N)k  With this observation, it is clear that 4 - 1 
at r - (&/N) f  - and this defines the location rv of a point of virtual control. When 
a position of virtual control exists in the flow field, shear waves with vertical 
wavelength 6 < (&/N):  are unable to propagate upstream beyond the position of 
virtual control. Consequently, the withdrawal layer upstream of the virtual control 
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point is unable to collapse beyond a thickness of order ( Q / N ) f .  The steady-state layer 
thickness is therefore 

L 
in time T - - - N-iQ-iL. 

C 

While (9a, 13) and (1 1) define three possible steady-state withdrawal layers, the 
transition between the inertial and viscous regimes is not clearly defined. One method 
of deriving a transition criterion is to consider a tank sufficiently long to include more 
than one flow regime and to ask at what point do the steady-state layer thicknesses 
for each regime match ? It is easy to show that in the two-dimensional case this type 
of matching procedure yields a single transition criterion : the parameter R in (1). For 
R > 1 an inertia-buoyancy withdrawal layer is present; and if R < 1 then only 
viscous-buoyancy withdrawal layers can exist. 

Following this approach, Lawrence & Imberger (1979) and Lawrence (1980) 
matched the observed axisymmetric inertial-layer thickness from (1 l) ,  with the 
viscous-diffusive-layer thickness, from (9b),  to obtain the transition parameter 
Q / ( v D ) f L .  If this parameter is much greater than one (i.e. L < Q / ( v D ) i )  then the flow 
is inertial and described by (11). Conversely, if L > Q / ( v D ) :  the flow is viscous, and 
described by (9b).  If we follow this procedure and take the ratio of the inertial-layer 
thickness in ( I  1) to the viscous-convective layer thickness in (9a),  we now obtain a 
different transition parameter, denoted here by S for future reference, of 

In order to differentiate between these two transition criteria, consider a tank of 
sufficiently large radius that there is a region close to the sink where the flow is 
dominated by inertial forces, and at some point upstream we anticipate the flow will 
be slow enough that viscous forces will become important. A necessary condition for 
viscous forces to be important and inertia forces to be negligible is, from 83.1, that 
R = FGd < 1 or L > L, - @N-!v-t. This is not suficient, however, to ensure viscous 
flow, since a second horizontal lengthscale, the position of the virtual point at 
rv - (&IN?, must also be considered. We note that the ratio LJrV = S2, as defined 
in (12), and thus the parameter S provides a convenient measure of the relative 
magnitude of both horizontal lengthscales of importance in governing the transition 
from inertial to viscous regimes in axisymmetric withdrawal. 

If the ratio LJrV is large then a virtual control point is present in the flow. 
Upstream of the potential-flow region adjacent to the sink there exists an inertial- 
buoyancy withdrawal layer of constant thickness 6 - ( Q / N ) t .  A t  distances upstream 
of L > &/(vD)i  diffusion of species becomes important, and the flow moves into a 
viscous-diffusive regime with thickness 6 - (vD)iLfN-f .  The layer thus continues to 
grow in thickness with increasing distance upstream. In this case, with S large, no 
viscous-convective regime is found in the flow field. Indeed, this lack of a physical 
transition to a viscous-convective regime is reflected in the fact that there is no 
lengthscale present in the definition of S in (12). 

If the ratio LJrv is small, on the other hand, there exists the possibility that viscous 
forces govern the flow before the virtual control point is reached. Effectively no virtual 
control point exists in the flow field. Upstream of the potential-flow region adjacent 
to the sink there exists a viscous-convective withdrawal layer of constant thickness 
6 - ( v Q / P ) t .  At distances upstream of L > G v h N 3 D - t  (i.e. R = F a  < Sc-2) 
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Steady -state 
withdrawal-layer 
half-thickness S 
and time T, to Constant of 

Regime steady state proportionality Source 

(a) S > Scrit 

( A )  S > Scrit and S > (a*S~-~)s S = c,(;? c, = 0.66 Lawrence&Imberger( 1979) 

c, = 0.81 
c, = 0.66 

average c, = 0.71 

Spigel & Farrant (1984) 
Present study (figure 4) in T, - (N- fQ- fL)  

8 = c2(uD)i 

in T, - N-' 

t 
S = c3 ($) 
in T, - N-'G&Y0 

6 = cz(vD)i - 

in T, - N-lQdS'cl 

( B )  S > S,,, and S < (crSe-z)h c2 = 2.9 Koh (1966) 

( b )  S < Scrit 

(C)  S < S,,, and S > (a*Sc-*)& c, = 2.1 Present study (figure 5) 

( D )  S < Scrit and S < ( ~ * S C - ~ ) $  c, = 2.9 Koh (1966) (4" 
TABLE 1 .  Flow regimes for axisymmetric withdrawal from a continuously stratified fluid. The parameters 
are S = (QzN/v")h = (Fea*i)h, F = Q / N L 3 ,  a* = NBL4/v2 and Sc = v / D .  From the experiments discussed in 
$4, Scrit 3. 

diffusion of species becomes important and the flow moves into a viscous-diffusive 
regime with thickness 6 - (uD)&N+. In this case with S small, viscous forces are 
important throughout the flow field. 

These arguments clearly indicate that the parameter S is of importance in 
determining whether an inertial or a viscous regime is present in the flow field. This 
parameter should have a value at transition of Scrit - 1, and enables the delineation 
of a number of possible regimes, each with their own evolution timescales and 
steady-state thicknesses. Section 4 examines these various regimes in a series of 
laboratory experiments for a range of values of the parameter S. In  anticipation of 
these data, however, table 1 summarizes the results for axisymmetric withdrawal 
from a continuously stratified fluid where all scales have been presented in terms of 
the regime parameter S. 

4. Laboratory experiments 

4.1. Inertialduoyancy withdrawal layers 
There have been relatively few quantitative laboratory studies on axisymmetric 
selective withdrawal from continuously stratified fluids. All studies have been in the 
inertial-buoyancy regime. Lawrence & Imberger (1979) (see also Lawrence 1980) 
conducted an initial experiment in a long rectangular tank, of width B, with 
withdrawal from a vertical pipe in the centre of the tank. In a more extensive set 
of experiments, Spigel & Farrant (1984) also used a relatively long rectangular tank, 
but there withdrawal was through a circular orifice in one vertical endwall. In both 

5 P L M  161 
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Experiment Q (cm3/s) N (rad/s) 

11.8 
24.3 
45.2 
64.6 
0.14 
0.21 
0.47 
0.84 
2.33 

0.53 
0.47 
1.76 
0.48 
0.47 
0.47 
0.52 
0.42 
0.42 

v (cm2/s) 

1.01 x 1 0 - 8  
1.01 x 1 0 - 2  
1.07 x 
1.01 x 10-2 
0.90 x 10-8 
0.90 x 1 0 - 2  

0.112 
0.110 
0.110 

D (cm2/s) s = ($?& 
1.3 x 10-5 
1.3 x 10-5 
1.3 x 
1.3 x 10-5 
1.3 x 10-5 
1.3 x 10-5 

x 8 x  lo-' 
x 8 x  lo-' 
x 8 x lo-' 

3.35 
3.65 
4.28 
4.16 
1.88 
1.98 
1.34 
1.64 
1.64 

TABLE 2. Summary of the laboratory experiments on axisymmetric selective withdrawal 

1.5 

0.5 

0.0 

I' = rNiQtr-1 

FIGURE 2. Temporal evolution of the withdrawal layer at two locations upstream for an 
inertial-buoyancy withdrawal layer for experiment 2: 0 ,  r = 7.5 cm; V, 13.5 cm. The inset sketch 
illustrates the method of determination of withdrawal-layer thickness from photographs of the 
distortion of the same dye streak at  times t = to and t = t ,  ( t l  > to) .  

cases, the flow towards the sink was radial only for distances upstream of the order 
of the tank width B. Further upstream, the sidewalls confined the flow, and it was then 
two-dimensional with an effective discharge per unit width of q = Q/B. In all their 
experiments, however, a virtual control point existed in the radial portion of the flow 
field since rv - (&/N) i  < B in every run. The withdrawal-layer thickness was then 
determined by the dynamics of the flow in the radial region and influenced by the 
virtual control point. As a consequence, even though all their measurements were 
made at distances upstream greater than B,  both studies found the withdrawal layer 
to be of constant thickness and scaled as S - (QIN):. 

It is clear from the discussion in $3 that this result, in turn, has important 
consequences in delineating the various flow regimes. As a consequence, we decided 
to conduct additional experiments in this regime, not only over a different parameter 
range from that of the previous work, but also in a configuration that approached 
the axisymmetric conditions considered in $3. 
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0 0.2 0.4 
r/  L 

0.6 

FIGURE 3. Centreline horizontal velocity as a function of radial distance from the sink for 
experiment 2, at steady-state conditions. Each point is computed by following a single dye trace 
over time to to t, ,  where the trace has moved correspondingly toward the sink from ro to rl .  The 
flow is considered steady only if t > 4N-g &-k r ,  and the velocity is assumed representative of the 
location !j(rl+rO) (where ( ro - r l ) /L  < 0.06 in all cases). 

All experiments in this study were conducted in a glass tank 60 cm square and 
30 cm deep. The tank was filled with a linear density gradient by the two-tank filling 
technique, using salt as the stratifying medium. The density gradient was then 
computed from density measurements made with an Anton Paar digital densimeter. 
The stratifying fluid was either water or a 66% mixture of glycerol and water. In 
the latter case, all viscosities were measured with Cannon-Fenske tube viscometers 
and the diffusivity of the stratifying species estimated from Mullin (1971, p. 68). The 
fluid was withdrawn from the tank via a pipe, of inside diameter 0.4 cm, projecting 
through the centre of the bottom of the tank and positioned to withdraw from the 
mid-depth. 

The flow was driven by either a gravity feed or, more commonly, a small pump. 
The withdrawal layer was observed by photographing the distortion over time of dye 
streaks produced by dropping crystals of Rhodamine B into the tank. The withdrawal- 
layer thickness 6, in effect the half-thickness, was then determined from the induced 
velocity field and was taken as the vertical distance from the horizontal centreline 
of the induced velocity profile to the first zero-crossing, as defined by successive 
photographs of the same dye streak (see the definition sketch inset in figure 2 above). 
A number of dye streaks were introduced into the tank, so that the temporal and 
spatial structure of the withdrawal layer could be examined. 

The parameters for the various withdrawal experiments are summarized in table 2. 
A typical temporal evolution of the withdrawal layer is shown in figure 2, where 
the total layer thickness is plotted against dimensionless time from table 1. The figure 
illustrates the asymptotic collapse of the withdrawal layer to the final steady-state 
withdrawal layer, with thickness independent of distance. The figure suggests that 
steady state is achieved in times t x 4(N3&%). Spigel t Farrant (1984) suggested 
that the time to steady state was t x 2(N3&-tL) ,  and both studies are clearly 
consistent with the anticipated time T, to steady state in table 2. Figure 3 depicts 
the steady-state centreline velocity towards the sink: i t  exhibits a rapid nonlinear 
decrease in magnitude with increasing radius, as suggested by (5). Taking our slightly 
more conservative estimate of the time to steady state as representative (i.e. t = 4Ts), 
figure 4 shows the observed steady-state withdrawal-layer thickness for experiments 
1 4 ,  all with the regime parameter S > 3. The straight line is Lawrence & Imberger’s 

5-2 
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0 1 2 3 4 5 6 
(QIW* (cm) 

FIGURE 4. Observed steady-state withdrawal-layer thicknesses for experiments 1 4  as a function 
of the scaled estimate of layer thickness for regime ( A )  in table 1 (a). The error bars represent plus 
or minus one standard deviation based on several estimates of layer thickness at different locations 
and times after steady state. 

(1979) suggested correlation of 6 = 0.66(Q/Np for their experiment with S = 5.12. 
Spigel t Farrant found 6 = O.EJl(Q/Np as a best fit to their experiments. Clearly the 
differences between the experiments are slight, and all three studies are in good 
agreement. They suggest that the layer is inertial-buoyancy for S > 3, it reaches 
steady state in the predicted timescale, i t  is constant in thickness with distance 
upstream, and the best estimate of steady-state withdrawal-layer thickness is 
6 = 0.71(Q/N)i (table 1).  

4.2. Viscous-buoyancy withdrawal layers 
The analysis of $3 identified a viscous-convective regime (regime C in table 1 b) with 
an expected steady-state layer thickness of 6 - ( v Q / P ) t  and time to steady state 
T, = O(N-lG&S-s). Using the same laboratory techniques described in $4.1 to 
estimate withdrawal-layer thickness, figure 5 depicts the temporal evolution of the 
withdrawal layer for experiment 9, with time non-dimensionalized by this estimate 
of T,. In such a viscous fluid ( v  = 0.11 cm2/s for experiment 9) the primary collapse 
(in time T - N-lGrt) occurs very rapidly (t' x 0.086 in the non-dimensionalized 
timescale of figure 5 ) ,  and thus with the dye-streak technique it is only practicable 
to examine the secondary collapse in time T, = O(N-1GdS-6). The data exhibit some 
scatter, but indicate that the layer approaches steady state in time t x 3T, and has 
a thickness independent of distance from the sink. Taking the time to steady state 
as t = 3Ts, figure 6 shows the plot of observed steady-state layer thickness for 
experiments 5-9, where the regime parameter S < 2. There is some scatter in the data 
due (as in figure 5) to the difficulties in making accurate measurements of layer 
thicknesses from the dye streaks for such very slow flows. Nevertheless, these data 
indicate the layer is viscous-convective if S < 2, the layers collapse to steady state 
in the expected timescale, and figure 6 suggests that 6 = 2. l (vQ/W)t  is a good 
description of the results. The experiments discussed in $4.1 and in the present section 
thus suggest that the critical value of S at transition is in the range Scrit x 2-3. 

Nothing has been said to date about the viscous-diffusive buoyancy layer with a 
thickness S - (vD)tLiN-i at steady state. It is very difficult to access this regime in 
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FIQURE 6. Observed steady-state withdrawal-layer thicknesses for experiments 5-9 as a function 
of the scaled estimate of layer thickness for regime (C) in table 1 (b). The error bars indicate one 
standard deviation about the mean from several estimates of layer thickness at different locations 
and times after steady state. 

the laboratory, and, to our knowledge, no experiments have been made. A t  steady 
state this regime has been examined numerically by Koh (1966), however, and from 
his work 6 = 2.9(vD)fLfN-f. The results of prior work and the present laboratory 
experiments are summarized in table 1. 

5. Withdrawal from discontinuously stratified fluids 
A problem closely related to the withdrawal of fluid from a continuously stratified 

fluid is that of withdrawal from a fluid with a layered density structure (figure 7). 
The question of interest is : for a given discharge Q through the point sink and given 
density stratification, with strength parameterized by g' = gAp/p,, at what value of 
lower layer depth d will the upper layer be drawn down? Prior to drawdown the 
withdrawn fluid comes entirely from the lower layer; after drawdown, it is a mix of 
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FIGURE 7. Definition sketch of withdrawal from a fluid with a layered density structure. 

both layers. For the purpose of our scaling arguments this two-layer stratification 
may be treated as simply a special case of the linear-stratification problem. The 
appropriate sales for the critical drawdown conditions may be written down 
immediately from the results derived in $3. 

For the case of the two-layer stratification and in the absence of viscous effects, 
the critical drawdown condition is achieved when buoyancy and inertia forces are 
in balance. Since flow is still entirely from the lower layer, the characteristic vertical 
scale of the motion is d .  In  the linear-stratification problem we found that when 
buoyancy and inertia forces were in balance the characteristic vertical scale of the 
motion was 6 - (&/N)t  (1 1). This comparison suggests an analogy between the linear- 
and two-layer-stratification problems where 6 - d and P - g’/d.  Thus, by substi- 
tuting these scale estimates into ( l l ) ,  we find that critical drawdown occurs when 
d - (Q2/g’);. This result, first predicted by Craya (1949) using a rather different 
approach, was confirmed in experiments by Gariel (1949) and Harleman, Morgan & 
Purple (1959). Subsequent work (Jirka & Katavola 1979; Blake & Ivey 1985) has 
shown that the finite size of the outlet can also have an influence on the value of 
the constant of proportionality in the expression for drawdown height. As in the 
corresponding regime for continuously stratified fluids, this result implies that at the 
critical drawdown condition the flow is controlled by a virtual control point upstream 
from the sink at rV - (Q2/g’);, where the local value of the internal Froude number 
4 = Q(g’d6)-i - 1.  

In  the case of a linear stratification it was shown in $3.1 that, when viscous effects 
are important (R = FGd < l),  an initial or primary withdrawal layer of thickness 
6 - ( v L / N ) i  will form in time T - N-lGr:. Furthermore, in the case of large Sc this 
layer will subsequently undergo a secondary collapse, and if Sc-5 < R < 1 a layer of 
thickness 6 - ( v Q / P ) i  will form in time T - N-lGdR-B (9a). For the case of an 
infinitely large Sc it is clear that for this secondary collapse 0 < R < 1 ,  and this result 
in turn implies the secondary collapse occurs in time T - N-lGd - the formation time 
of the primary withdrawal layer. Thus for infinitely large Sc for times T - N-lcr! 
a withdrawal-layer structure will have formed with a thickness S - ( v & / P ) k .  

A discretely layered density stratification is, by definition, non-diffusive or, equally, 
has an infinitely large Sc. In  this limit, for the linear-stratification problem, we see 
from the above that the only possible withdrawal-layer thickness is 6 - ( v&/P) : .  
Again, substituting P - g’/d and d for 6, we obtain a second expression for drawdown 
height d - (v&/g’):, where v is the viscosity of the layer adjacent to the sink - 
expressing the fact that buoyancy and viscous forces are now in balance at the critical 
drawdown condition. Blake & Ivey (1985) conducted a series of laboratory 
experiments in viscous fluids and confirmed this predicted drawdown height. 
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Constant of 
Regime Drawdown height proportionality Source 

S > Scrit c1 = 0.81$ Harleman et al. (1959) 
C, = 0.69t Craya (1949) 

S < Scrit d = %($?y c2 = 2.1 Blake & Ivey (1985) 

t Theoretical value for a point sink. 
$ Experimental value for sink of finite size (see text). 

TABLE 3. Axisymmetric drawdown (drawup) heights from a layered density structure, 
where S = ( Q 3 g ’ / v 6 ) ~  and S,,,, x 2-5 

To distinguish between these two possibilities we follow the procedure used in 
deriving (12) and simply match the two scales. This yields the transition criterion 
S = (Q3g’/v6)h. When S is large inertial forces dominate, and for small S viscous forces 
are important. The results of Blake t Ivey (1985) suggest that the value of the 
transition between the two regimes actually occurs for S over the range 2-5, 
depending upon the importance of finite pipe diameter and interfacial thickness. 
Table 3 summarizes the possible regimes and the predicted critical drawdown (or 
drawup) heights in a layered stratification. 

6. Inflow 
6.1. Inflow into a continuously strati$ed environment 

The axisymmetric inflow of a homogeneous fluid into a stratified container may be 
treated in similar fashion to the analysis in $3 above. Attention is focused here on 
the case of a, neutrally buoyant inflow at constant discharge Q with low momentum 
such that there are no entrance mixing effects. As ITF first pointed out, exact 
symmetry exists between the scaling of the inflow and outflow problems. The same 
flow regimes as in $3  may be identified. 

If the parameter S is large, viscosity is unimportant and the thickness of the inflow 
is 6 - (Q/N) t  from table 1 (a). For a spreading axisymmetric inflow, conservation of 
mass requires 

Qt N 1:6, (13) 

where 1, is the radial extent of the spreading intrusion. Substituting for 6, we obtain 
the spreading law 

I ,  - (&M)td .  (14) 

As for the corresponding inertial-withdrawal problem in $3.2, the implication is that 
the flow is influenced by a virtual control point at rv - (&IN$ 

At large distances from the source, diffusion of species will become important. From 
table 1 (a) this occurs when S - (G~SC-~)~ (i.e. I, - Q/(vD) i ) ,  and with 6 - (vD)! l$ N-t 
we obtain from (13) the spreading law 

I ,  - [ST P. 
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FIGURE 8. Non-dimensionalized spreading radius (from (16)), as a function of time for the 
experiments on intrusion into a stratified fluid (Q = 4Q*, where &* is measured inflow into a 90' 
sector). 

Experiment & (cm3/s) N (rad/s) v (cm2/s) S 

1 A 1.52 0.49 1 .oo x 10-2 2.53 
2 0 3.46 1.76 1.06 x 3.04 

On the other hand, if S is small then viscous forces are important throughout the 
flow field, from table 1 ( b )  the initial intrusion thickness is 6 N (vQ/W)k,  and we obtain 
from (13) the spreading law 

As in the corresponding withdrawal problem, at large distances from the source, 
diffusion of species will also become important. From table l ( b )  this occurs when 
S - (&SC-~)& (i.e. 1, - QbAN-iD-i), and subsequently the intrusion spreadsaccording 
to (15). 

Of these three possible spreading laws, only the viscous-convective spreading in 
(16) has been studied. Chen (1980) obtained the result in (16), and used a similarity 
technique to evaluate the constant of proportionality for the steady state flow. 
Zatsepin & Shapiro (1982) conducted a number of laboratory experiments in the same 
flow regime, and found good agreement with the predicted spreading law. 
Unfortunately they do not provide the parameters for all their experiments, although 
from the limited information provided it seems that the maxima value of S was about 
2.7. 

Accordingly, we conducted two inflow experiments at the upper end of their 
experimental range. The same tank and filling system were used as described in $4. 
The inflow was introduced from a constant-head bucket through a 90' diffuser (radius 
3 cm) placed in one corner of the tank. The spreading intrusion was photographed 
from above, and the results are shown in figure 8, where a best-fit straight line is drawn 
through the data. For experiment 1 the data for very small time do not collapse onto 
the line, and this may be due partially to the small but finite size of the diffuser, but 
it is most likely a result of experimental difficulties in accurately controlling the 
discharge at such very low flow rates. For a very long time the data in experiment 
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Constant of 
Regime Spreading law proportionality Source 

(a) s > scr i t  s > (Grsc-g)h 1, = c,(QM)fti No data 

Scrit < s < (Grsc-2)h No data 1, = “[S] t+ 

(6) s < scr i t  

c, = 0.45 Chen (1980) 

c, = 0.53 
c, = 0.45 Present study 

Zatsepin & Shapiro (1982) 

average c, = 0.51 

s < (Grsc-e)* No data 

TABLE 4. Spreading laws for a homogeneous intrusion into a stratified environment, 
where S = (Q2N/v3)h 

2 start, to roll-off the straight line. This roll-off for l,/L > 0.6, where L is the tank length 
of 60 cm, is an effect of the endwalls and is commonly observed in inflow experiments 
(e.g. Maxworthy 1972). (For experiment 1 the experiment was terminated when 
l ,/L = 0.6.) The remaining points are well correlated, and the best-fit line indicates _ -  
that the spreading law is 

These results suggest that the inflow is in this regime for S < 3, and the data are in 
good agreement with the expected spreading law in (16). 

The viscous-diffusive spreading law, given by (15), apparently has not been 
considered by previous investigators. As Ivey & Imberger (1978) found, however, in 
oceanic or limnological applications the effect of turbulent motions is to change the 
effective value of the Schmidt number from the molecular value. This change, in turn, 
may promote a transition to this regime, and thus the relative importance of this 
spreading law should not be overlooked. As for the corresponding withdrawal flow, 
it is difficult to access this regime in the laboratory, and it remains uninvestigated. 

In  addition to the viscous regime in (16), Chen (1980) also argued that an 
inertial-buoyancy regime existed, which, at steady state, had a spreading law given 
by 

1, - (NQ)id. (17) 

Furthermore, an intrusion that initially obeyed this law would eventually slow 
until viscous forces became important, at a lengthscale 1, N (Q3/Nv2): (i.e. where 
R = FG& - 1 as defined in $3.1). Chen then argues the subsequent spread of the 
intrusion is described by (16). No experimental evidence is available to confirm the 
prediction in (17). However, the spreading law in (17) is for an intrusion with a 
thickness 6 w (Q/Nl,)i .  This is precisely the thickness of the withdrawal layer found 
in (10c) - a withdrawal-layer thickness that we found was not physically observed, 
owing to the influence of a virtual control point in the flow ($3.2). 

Without experimental evidence it is not possible to differentiate between these two 
possible spreading laws for inertial inflows. Nevertheless, ITF demonstrated that 
there was a complete analogy between the outflow and inflow problems in the 
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case of a line sink or source respectively. Assuming that the same analogy applies 
for the axisymmetric problem (and it certainly does for viscously dominated flows), 
between the observed axisymmetric withdrawal-layer flows and the corresponding 
inflows, then (14)-( 16) describe the expected spreading behaviour for axisymmetric 
intrusions into a linearly stratified environment. A summary of the possible laws is 
given in table 4. 

6.2. Inflow of a dense fluid into a homogeneous environment 
The axisymmetric spread of a relatively dense (or light) fluid into a homogeneous 
environment is a problem of some interest. Using the spreading laws for inflows into 
continuously stratified environments delineated by ITF and the scaled estimate of 
the density stratification of P - g‘/d (as in $5)) it  is straightforward to derive the 
spreading laws for two-dimensional gravity currents. These spreading laws or regimes 
and the transition criterion between regimes agree with the independent arguments 
and experimental observations summarized by Chen (1 980). These results suggest the 
same procedure may be applied here and the spreading laws for axisymmetric density 
currents derived from the results of the previous sections. 

Our interest here is in axisymmetric gravity currents that propagate, without 
significant mixing, into a homogeneous environment - although buoyancy forces are 
important over the length 1, of the gravity current. The arguments in §$5 and 6.1 
suggest that there are two possible spreading regimes, and the transition between the 
two is determined by the value of the criterion S = (Q3g’/vs)h - as in $5. 

First, if the parameter S is large then viscosity is unimportant, and, again using 
the scaled estimate P N g’/d,  we note that the thickness of the inflow is d - (Q2 /g ‘ ) )  
(as for the corresponding critical drawdown depth in table 3). Using the expression 
for conservation of mass in (13), we obtain the spreading law 

1, - (Q3g’)h ti. (18) 

As in the inertially dominated regime in 56.1, the implication is that the flow is 
influenced by a virtual control point, now at rv - (Q2/g’)i. 

Secondly, if the parameter S is small then viscous forces are important over the 
length of the gravity current, the thickness of the inflow is d - (vQ/g‘)f  (as for the 
corresponding critical drawdown depth in table 3), and we obtain the spreading law : 

Q3g’ t 
1, - (--) ti. 

Chen (1980) has examined this later regime in a numerical study, and Huppert (1982) 
has performed a series of laboratory experiments in the same regime. 

Didden & Maxworthy (1982) have also made a series of laboratory experiments, 
which they suggested were in this regime. However, the value of the transition 
parameter S for the experiments, summarized in their table 2, ranges between 5.77 
and 6.97. These values are much larger than the critical value of about 3 suggested 
by the results in $§4) 5 and 6.1. It suggests their experiments should in fact obey the 
spreading law described by (18). To test this proposition, the data from their figure 9 
are replotted in our figure 9 against the spreading law (18). Clearly, there is an 
excellent collapse of the data. Didden & Maxworthy did not vary the viscosity, 
however, and all that can really be said is that their data are consistent with (18). 
The experiments by Huppert, with a value of S of 0.471 and 0.571 (where g replaces 
g’ in the definition of S for his experiments), are clearly in the viscous regime, and 
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e 

103 

FIQURE 9. Non-dimensionalized spreading radius (from (18)) for the data from Didden & 
Maxworthy’s (1982) figure 9. 

Constant of 
Regime Spreading law proportionality Source 

s ’ Scr,, 2, = c1 (Q8q’)A ti c1 = 1.5 Didden & Maxworthy (1982) 

&,it z r = c 2 ( ! y  c2 = 0.63 Chen (1980) 

c2 = 0.63 Huppert (1982) 
average c2 = 0.63 

TABLE 5. Spreading laws for axisymmetric gravity currents, where S = (Q3q’/vS)h 

are in close agreement with both Chen’s predictions and his own numerical calculations 
and the predicted spreading law in (19). 

Britter (1979) reports a series of laboratory experiments, several runs of which he 
contends were in the inertial regime. He argues, contrary to (18), the the spreading 
law is 

and the inflow thickness d - (Qz/g’Z$. This thickness again corresponds to the 
withdrawal-layer thickness for the continuous-stratification case found in ( lOc), 
which was unobtainable owing to the influence of the virtual control point in the flow. 
Britter (1985, personal communication) has kindly provided his raw data, which are 
replotted in the Appendix. A close examination of the data reveals that they 
support neither (20) nor (18). It seems possible that the geometry of the inflow device, 
and possibly mixing effects, may have influenced the experiments although we are 
unable to provide a definitive explanation of the actual observations (Appendix). The 
earlier experiments of Sharp (1969a,b), replotted by Chen (1980), suggest a ti 
dependence as opposed to a d spreading law, although mixing effects driven by the 
momentum of the input fluid seem likely to be important. Laboratory experiments 
in the inertial regime with no mixing or source-geometry effects are difficult to 
perform, but clearly further work is required in order to resolve these questions. 
However, assuming (as in $6.1) that there is a direct analogy with the withdrawal 

1, - (Qg’): d (20) 
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problem, the above arguments suggest that (18) and (19) are the appropriate 
spreading laws for axisymmetric density currents, that they are consistent with 
published experimental data which cover both regimes, and that table 5 summarizes 
the possible spreading laws. 

7. Conclusions 
The axisymmetric withdrawal of fluid from a continuously stratified fluid is a flow 

with a number of possible flow regimes. In  the regime where only inertia and 
buoyancy are important, our results are consistent with previous work in finding a 
steady-state withdrawal layer of constant thickness independent of distance from the 
sink. We argue that this flow is influenced by the presence of a virtual control point 
in the flow field. Consequently, the analogy between the axisymmetric and the 
previously studied two-dimensional withdrawal-layer flows breaks down in this 
regime. 

This study has also identified a viscous-convective withdrawal layer flow for 
high-Schmidt-number fluids with a withdrawal-layer thickness independent of 
distance from the sink, unlike the two-dimensional case. The existence of this regime 
is confirmed by laboratory experiments. A third regime also exists in which a 
viscous-diffusive force balance prevails. The results of the present study suggest that 
the transition parameter S = (Q2N/u3)h is the appropriate parameter to differentiate 
between these possible flow regimes. The parameter S can be interpreted as the ratio 
of the radial lengthscale at  which viscous forces may become important to the radial 
location of the virtual control point. The laboratory experiments indicate that S has 
a value of approximately 3 at transition between regimes where inertia is important 
to those where viscosity is important. A summary of the possible flow regimes for 
the complete range of flow parameters is given in table 1. 

It is argued that these results may also be extended to predict the critical 
drawdown (or drawup) condition from a two-layered stratification. Two critical 
drawdown conditions are possible: one in which inertia and buoyancy forces are 
important, and a second in which viscous and buoyancy forces are important. The 
results are summarized in table 3. 

Imberger et al. (1976) have demonstrated that there is a complete analogy between 
withdrawal and non-mixing inflows into a continuously stratified environment in the 
case of two-dimensional flows. Assuming that the same analogy exists in the 
axisymmetric case, and using the above results, the spreading laws for axisymmetric 
inflows into continuously stratified environments may be readily derived. The pre- 
dicted spreading laws are summarized in table 4. Similarly, the spreading laws for axi- 
symmetric density currents into homogeneous environments may be simply derived 
(table 5) .  While these results differ from previous work - in that for continuous inflows 
the maximum rate of spread is predicted to be proportional to & - most published 
data for axisymmetric gravity currents are in agreement with our predictions. 

The authors would like to thank Jorg Imberger and Stewart Turner for constructive 
comments on an earlier draft of this work. They would also like to express their 
appreciation to Rex Britter for kindly supplying both the data and the details of his 
original experiments. 
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Q 
(( x 10-3) g' 

Experiment om3 8-l) (cm s - ~ )  initial slope final slope 

4.59 
0.861 
6.31 
3.01 
2.62 
3.12 
2.93 
0.0215 
0.030 

11.8 
31.4 
35.3 
41.2 
44.1 
18.8 
78.5 
34.3 
46.1 

12.7 
10.4 
14.0 
12.7 
12.4 
12.2 
13.0 
5.98 
6.38 

1.08 0.72 
0.94 0.65 
0.94 0.66 
0.94 0.63 
0.96 0.65 
0.94 0.73 
0.85 0.60 
1.15 0.72 

0.52 

TABLE 6. Summary of the available data from the experiments of Britter (1979) 
(data supplied by Britter 1985 personal communication) 

FIGURE 10. 

Appendix 
Britter (1979) has performed a series of experiments on gravity currents, and has 

kindly provided the data from his original work. The data from only nine of the 
original sixteen experiments are now available, and the parameters are summarized 
in table 6. In  order to minimize entrance mixing effects all but one experiment 
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introduced the flow through a 4 cm wide parallel channel, and the flow subsequently 
emerged into a sector with an included angle of 10". This necessitated a correction 
of the space and time origin (such that the density current radius I ,  = 0 at t = 0) 
and these data, as plotted by Britter (1979) in his figure 2, are replotted here in figures 
10 and 1 1. Two figures are used, for clarity, to illustrate the trends in each experiment. 
For the same reason, experiment 7 in figure 10 is shown plotted with open circles and 
a dotted best fit by eye. 

It is immediately apparent that no one single experiment follows a spreading law 
proportional to d ,  as predicted by (20). In  eight of the runs, the data exhibit a distinct 
change in slope. The slopes for each of the runs are summarized in the last two 
columns in table 6. For the first eight runs the average initial slope is 0.98, and the 
average final slope is 0.67. Run number 9 was performed in the 10" sector without 
the benefit of the initial 4 cm wide channel section, and exhibits quite a different 
behaviour ( I ,  oc 

The initial slopes of the first eight experiments are close to one, and it is interesting 
to note that a plane or two-dimensional inertial gravity current will spread a t  a rate 
proportional to Po (Chen 1980). If the gravity current behaved initially like a 
two-dimensional current, then one would also expect it to behave more like an 
axisymmetric gravity current for large radii as it advanced further into the 10" sector. 
The observed spreading law of t o a s '  is not predicted, however, by either (18) or (20). 
While entrance mixing effects were minimized in the experiments, there are some 
mixing effects a t  the gravity-current head observed in the experiments. In addition, 
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there are difficulties associated with defining the space and, in particular, the time 
origins, and the values assigned to these origins influence the apparent spreading law 
when the data are plotted. These difficulties conspire to. prevent a definitive 
explanation of the experimental observations by either (18) or (20), and suggest that 
further experiments could usefully be performed. 
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